Log and Get Parameters
Parameters or HyperParameters that define your experiment and Machine Learning model. For example, learning_rate
, cache_size
Logging the hyperparameters
Hyperparameters are independent variables for a run used to control the learning process. We can capture the hyperparameters using the log_params
method.
Once set, the hyperparameters are immutable. If you need to change the hyperparameter, it basically means that you are changing your model and it's best to create a new run for that. This way, the system exactly tracks the model along with the exact configuration to train it.
Note that parameter values are stringified before storing.
from truefoundry.ml import get_client
client = get_client()
run = client.create_run(ml_repo="iris-demo", run_name="svm-model")
run.log_params({"cache_size": 200.0, "kernel": "linear"})
run.end()
Viewing logged parameter in dashboard
These logged parameters can be seen in the MLFoundry dashboard.
Accessing parameters for a run
You can use the get_params
method. It returns a dictionary
from truefoundry.ml import get_client
client = get_client()
run = client.get_run("run-id-of-the-run")
print(run.get_params())
Filtering runs bases on parameter value
To filters runs, click on top right corner of the screen to apply the required filter.
Capturing command-line arguments
We can capture command-line arguments directly from the argparse.Namespace
object.
import argparse
from truefoundry.ml import get_client
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, required=True)
args = parser.parse_args()
client = get_client()
run = client.create_run(ml_repo="iris-demo")
run.log_params(args)
run.end()
Can I change the param value once logged?
No you cannot change the value of param once logged.
Updated about 1 month ago