Runs
module Runs
Runs
class MlFoundryRun
MlFoundryRun
MlFoundryRun.
property auto_end
Tells whether automatic end for run
is True or False
property dashboard_link
Get Mlfoundry dashboard link for a run
property fqn
Get fqn for the current run
property ml_repo
Get ml_repo name of which the current run
is part of
property run_id
Get run_id for the current run
property run_name
Get run_name for the current run
property status
Get status for the current run
function auto_log_metrics
auto_log_metrics
auto_log_metrics.
Args:
model_type
(enums.ModelType): model_typedata_slice
(enums.DataSlice): data_slicepredictions
(Collection[Any]): predictionsactuals
(Optional[Collection[Any]]): actualsclass_names
(Optional[List[str]]): class_names prediction_probabilities:
Returns:
ComputedMetrics:
function delete
delete
This function permanently delete the run
Example:
import truefoundry.ml as tfm
client = tfm.get_client()
client.create_ml_repo('iris-learning')
run = client.create_run(ml_repo="iris-learning", run_name="svm-model1")
run.log_params({"learning_rate": 0.001})
run.log_metrics({"accuracy": 0.7, "loss": 0.6})
run.delete()
In case we try to call or acess any other function of that run after deleting then it will through MlfoundryException
Example:
import truefoundry.ml as tfm
client = tfm.get_client()
client.create_ml_repo('iris-learning')
run = client.create_run(ml_repo="iris-learning", run_name="svm-model1")
run.log_params({"learning_rate": 0.001})
run.log_metrics({"accuracy": 0.7, "loss": 0.6})
run.delete()
run.log_params({"learning_rate": 0.001})
function end
end
End a run
.
This function marks the run as FINISHED
.
Example:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project", run_name="svm-with-rbf-kernel"
)
# ...
# Model training code
# ...
run.end()
In case the run was created using the context manager approach, We do not need to call this function.
import truefoundry.ml as tfm
client = tfm.get_client()
with client.create_run(
ml_repo="my-classification-project", run_name="svm-with-rbf-kernel"
) as run:
# ...
# Model training code
...
# `run` will be automatically marked as `FINISHED` or `FAILED`.
function get_metrics
get_metrics
Get metrics logged for the current run
grouped by metric name.
Args:
metric_names
(Optional[Iterable[str]], optional): A list of metric names For which the logged metrics will be fetched. If not passed, then all metrics logged under therun
is returned.
Returns:
Dict[str, List[Metric]]
: A dictionary containing metric name to list of metrics map.
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project", run_name="svm-with-rbf-kernel"
)
run.log_metrics(metric_dict={"accuracy": 0.7, "loss": 0.6}, step=0)
run.log_metrics(metric_dict={"accuracy": 0.8, "loss": 0.4}, step=1)
metrics = run.get_metrics()
for metric_name, metric_history in metrics.items():
print(f"logged metrics for metric {metric_name}:")
for metric in metric_history:
print(f"value: {metric.value}")
print(f"step: {metric.step}")
print(f"timestamp_ms: {metric.timestamp}")
print("--")
run.end()
function get_params
get_params
Get all the params logged for the current run
.
Returns:
Dict[str, str]
: A dictionary containing the parameters. The keys in the dictionary are parameter names and the values are corresponding parameter values.
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.log_params({"learning_rate": 0.01, "epochs": 10})
print(run.get_params())
run.end()
function get_tags
get_tags
Returns all the tags set for the current run
.
Returns:
Dict[str, str]
: A dictionary containing tags. The keys in the dictionary are tag names and the values are corresponding tag values.
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.set_tags({"nlp.framework": "Spark NLP"})
print(run.get_tags())
run.end()
function list_artifact_versions
list_artifact_versions
Get all the version of a artifact from a particular run to download contents or load them in memory
Args:
artifact_type
: Type of the artifact you want
Returns:
Iterator[ArtifactVersion]
: An iterator that yields non deleted artifact-versions of a artifact under a given run sorted reverse by the version number
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(ml_repo="iris-learning", run_name="svm-model1")
artifact_versions = run.list_artifact_versions()
for artifact_version in artifact_versions:
print(artifact_version)
run.end()
function list_model_versions
list_model_versions
Get all the version of a models from a particular run to download contents or load them in memory
Returns:
Iterator[ModelVersion]
: An iterator that yields non deleted model-versions under a given run sorted reverse by the version number
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.get_run(run_id="<your-run-id>")
model_versions = run.list_model_versions()
for model_version in model_versions:
print(model_version)
run.end()
function log_artifact
log_artifact
Logs an artifact for the current ML Repo.
An artifact
is a list of local files and directories. This function packs the mentioned files and directories in artifact_paths
and uploads them to remote storage linked to the experiment
Args:
name
(str): Name of the Artifact. If an artifact with this name already exists under the current ML Repo, the logged artifact will be added as a new version under thatname
. If no artifact exist with the givenname
, the given artifact will be logged as version 1.artifact_paths
(List[truefoundry.ml.ArtifactPath], optional): A list of pairs of (source path, destination path) to add files and folders to the artifact version contents. The first member of the pair should be a file or directory path and the second member should be the path inside the artifact contents to upload to.
E.g. >>> run.log_artifact(
... name="xyz",
... artifact_paths=[
tfm.ArtifactPath("foo.txt", "foo/bar/foo.txt"),
tfm.ArtifactPath("tokenizer/", "foo/tokenizer/"),
tfm.ArtifactPath('bar.text'),
('bar.txt', ),
('foo.txt', 'a/foo.txt')
]
... )
would result in
.
└── foo/
├── bar/
│ └── foo.txt
└── tokenizer/
└── # contents of tokenizer/ directory will be uploaded here
description
(Optional[str], optional): arbitrary text upto 1024 characters to store as description. This field can be updated at any time after logging. Defaults toNone
metadata
(Optional[Dict[str, Any]], optional): arbitrary json serializable dictionary to store metadata. For example, you can use this to store metrics, params, notes. This field can be updated at any time after logging. Defaults toNone
step
(int): step/iteration at which the vesion is being logged, defaults to 0.
Returns:
truefoundry.ml.ArtifactVersion
: an instance ofArtifactVersion
that can be used to download the files, or update attributes like description, metadata.
Examples:
import os
import truefoundry.ml as tfm
with open("artifact.txt", "w") as f:
f.write("hello-world")
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project", run_name="svm-with-rbf-kernel"
)
run.log_artifact(
name="hello-world-file",
artifact_paths=[tfm.ArtifactPath('artifact.txt', 'a/b/')]
)
run.end()
function log_images
log_images
Log images under the current run
at the given step
.
Use this function to log images for a run
. PIL
package is needed to log images. To install the PIL
package, run pip install pillow
.
Args:
images
(Dict[str, "truefoundry.ml.Image"]): A map of string image key to instance oftruefoundry.ml.Image
class. The image key should only contain alphanumeric, hyphens(-) or underscores(_). For a single key and step pair, we can log only one image.step
(int, optional): Training step/iteration for which theimages
should be logged. Default is0
.
Examples:
Logging images from different sources
import truefoundry.ml as tfm
import numpy as np
import PIL.Image
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project",
)
imarray = np.random.randint(low=0, high=256, size=(100, 100, 3))
im = PIL.Image.fromarray(imarray.astype("uint8")).convert("RGB")
im.save("result_image.jpeg")
images_to_log = {
"logged-image-array": tfm.Image(data_or_path=imarray),
"logged-pil-image": tfm.Image(data_or_path=im),
"logged-image-from-path": tfm.Image(data_or_path="result_image.jpeg"),
}
run.log_images(images_to_log, step=1)
run.end()
function log_metrics
log_metrics
Log metrics for the current run
.
A metric is defined by a metric name (such as "training-loss") and a floating point or integral value (such as 1.2
). A metric is associated with a step
which is the training iteration at which the metric was calculated.
Args:
metric_dict
(Dict[str, Union[int, float]]): A metric name to metric value map. metric value should be eitherfloat
orint
. This should be a non-empty dictionary.step
(int, optional): Training step/iteration at which the metrics present inmetric_dict
were calculated. If not passed,0
is set as thestep
.
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.log_metrics(metric_dict={"accuracy": 0.7, "loss": 0.6}, step=0)
run.log_metrics(metric_dict={"accuracy": 0.8, "loss": 0.4}, step=1)
run.end()
function log_model
log_model
Serialize and log a versioned model under the current ML Repo. Each logged model generates a new version associated with the given name
and linked to the current run. Multiple versions of the model can be logged as separate versions under the same name
.
Args:
name
(str): Name of the model. If a model with this name already exists under the current ML Repo, the logged model will be added as a new version under thatname
. If no models exist with the givenname
, the given model will be logged as version 1.model_file_or_folder
(str): Path to either a single file or a folder containing model files. This folder is usually created using serialization methods of libraries or frameworks e.g.joblib.dump
,model.save_pretrained(...)
,torch.save(...)
,model.save(...)
framework
(Union[enums.ModelFramework, str]): Model Framework. Ex:- pytorch, sklearn, tensorflow etc. The full list of supported frameworks can be found intruefoundry.ml.enums.ModelFramework
. Can also beNone
whenmodel
isNone
.description
(Optional[str], optional): arbitrary text upto 1024 characters to store as description. This field can be updated at any time after logging. Defaults toNone
metadata
(Optional[Dict[str, Any]], optional): arbitrary json serializable dictionary to store metadata. For example, you can use this to store metrics, params, notes. This field can be updated at any time after logging. Defaults toNone
step
(int): step/iteration at which the model is being logged, defaults to 0.
Returns:
truefoundry.ml.ModelVersion
: an instance ofModelVersion
that can be used to download the files, load the model, or update attributes like description, metadata, schema.
Examples:
- Sklearn
import truefoundry.ml as tfm
from truefoundry.ml import ModelFramework
import joblib
import numpy as np
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
y = np.array([1, 1, 2, 2])
clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
clf.fit(X, y)
joblib.dump(clf, "sklearn-pipeline.joblib")
client = tfm.get_client()
client.create_ml_repo( # This is only required once
ml_repo="my-classification-project",
# This controls which bucket is used.
# You can get this from Integrations > Blob Storage. `None` picks the default
storage_integration_fqn=None
)
run = client.create_run(
ml_repo="my-classification-project"
)
model_version = run.log_model(
name="my-sklearn-model",
model_file_or_folder="sklearn-pipeline.joblib",
framework=ModelFramework.SKLEARN,
metadata={"accuracy": 0.99, "f1": 0.80},
step=1, # step number, useful when using iterative algorithms like SGD
)
print(model_version.fqn)
- Huggingface Transformers
import truefoundry.ml as tfm
from truefoundry.ml import ModelFramework
import torch
from transformers import AutoTokenizer, AutoConfig, pipeline, AutoModelForCausalLM
pln = pipeline(
"text-generation",
model_file_or_folder="EleutherAI/pythia-70m",
tokenizer="EleutherAI/pythia-70m",
torch_dtype=torch.float16
)
pln.model.save_pretrained("my-transformers-model")
pln.tokenizer.save_pretrained("my-transformers-model")
client = tfm.get_client()
client.create_ml_repo( # This is only required once
ml_repo="my-llm-project",
# This controls which bucket is used.
# You can get this from Integrations > Blob Storage. `None` picks the default
storage_integration_fqn=None
)
run = client.create_run(
ml_repo="my-llm-project"
)
model_version = run.log_model(
name="my-transformers-model",
model_file_or_folder="my-transformers-model/",
framework=ModelFramework.TRANSFORMERS
)
print(model_version.fqn)
function log_params
log_params
Logs parameters for the run.
Parameters or Hyperparameters can be thought of as configurations for a run. For example, the type of kernel used in a SVM model is a parameter. A Parameter is defined by a name and a string value. Parameters are also immutable, we cannot overwrite parameter value for a parameter name.
Args:
param_dict
(ParamsType): A parameter name to parameter value map. Parameter values are converted tostr
.flatten_params
(bool): Flatten hierarchical dict, e.g.{'a': {'b': 'c'}} -> {'a.b': 'c'}
. All the keys will be converted tostr
. Defaults to False
Examples:
- Logging parameters using a
dict
.
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.log_params({"learning_rate": 0.01, "epochs": 10})
run.end()
- Logging parameters using
argparse
Namespace object
import argparse
import truefoundry.ml as tfm
parser = argparse.ArgumentParser()
parser.add_argument("-batch_size", type=int, required=True)
args = parser.parse_args()
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.log_params(args)
function log_plots
log_plots
Log custom plots under the current run
at the given step
.
Use this function to log custom matplotlib, plotly plots.
Args:
plots (Dict[str, "matplotlib.pyplot", "matplotlib.figure.Figure", "plotly.graph_objects.Figure", Plot][str, "matplotlib.pyplot", "matplotlib.figure.Figure", "plotly.graph_objects.Figure", Plot]): A map of string plot key to the plot or figure object. The plot key should only contain alphanumeric, hyphens(-) or underscores(_). For a single key and step pair, we can log only one image.
step
(int, optional): Training step/iteration for which theplots
should be logged. Default is0
.
Examples:
- Logging a plotly figure
import truefoundry.ml as tfm
import plotly.express as px
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project",
)
df = px.data.tips()
fig = px.histogram(
df,
x="total_bill",
y="tip",
color="sex",
marginal="rug",
hover_data=df.columns,
)
plots_to_log = {
"distribution-plot": fig,
}
run.log_plots(plots_to_log, step=1)
run.end()
- Logging a matplotlib plt or figure
import truefoundry.ml as tfm
from matplotlib import pyplot as plt
import numpy as np
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project",
)
t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2 * np.pi * t)
(line,) = plt.plot(t, s, lw=2)
plt.annotate(
"local max",
xy=(2, 1),
xytext=(3, 1.5),
arrowprops=dict(facecolor="black", shrink=0.05),
)
plt.ylim(-2, 2)
plots_to_log = {"cos-plot": plt, "cos-plot-using-figure": plt.gcf()}
run.log_plots(plots_to_log, step=1)
run.end()
function set_tags
set_tags
Set tags for the current run
.
Tags are "labels" for a run. A tag is represented by a tag name and value.
Args:
tags
(Dict[str, str]): A tag name to value map. Tag name cannot start withmlf.
,mlf.
prefix is reserved for truefoundry. Tag values will be converted tostr
.
Examples:
import truefoundry.ml as tfm
client = tfm.get_client()
run = client.create_run(
ml_repo="my-classification-project"
)
run.set_tags({"nlp.framework": "Spark NLP"})
run.end()
Updated about 2 months ago